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Technical Details of the Simulation
Bond energy between cations and phenol in water is calculated by
using computer simulation. Starting from various initial config-
urations of cations and phenol, depending on their angles and
distance, we perform the configuration optimization.We consider
about 1,440 different initial conditions, depending on the distance
(2 Å ∼ 6 Å) and the solid angle between cation and π residue.
After the optimization, the total energy of the system is calcu-
lated. We distract the interaction energy by subtracting each
energy of the single-molecule system from the total energy of the
system. The energies of single-molecule systems are obtained
from the separated simulations after the optimization process.
All of the calculations were done by the DFT (Density Func-
tional Theory) method with the 6-31+G** basis set, the M06-2X
hybrid functional, and the SMD (Solvation Model based on
Density) implicit water model, using the Gaussian09 program (43).

Macroscopic Like-Charged Polyelectrolyte Complexation
Due to the Cation–π (or Short-Ranged) Bond
Our goal is to reveal the criterion that the short-ranged cation–π
bond overcomes the longer-ranged electrostatic repulsion to lead
the macroscopic phase separation. For this purpose, we con-
struct the Ginzburg–Landau-like theory by using a relevant
coarse-grained order parameter (46, 47). For systematic derivation,
we start from the field theoretical representation. It is extremely
difficult to consider the general polyelectrolyte in 3D. Instead we
reduce the complexity of the work by assuming the polyelec-
trolytes are directed polymers and almost aligned along the z
axis. Then, the contour of the polymer is rðzÞ=R+

R z
0 dz′uðz′Þ,

where R is one end of the polymer and uðzÞ= drðzÞ=dz is the
tangent vector along the polymer. The polymer segment
density for N polymers of length L at a point x is defined
by ρ̂ðxÞ=PN

i=1

R L
0 dz  riδðriðzÞ− xÞ. There are two competing

interaction terms: the short-ranged cation–π bond and the
longer-ranged electrostatic repulsion. The short-ranged
bond is often well approximated by the Gaussian potential
UAðxÞ=−ΓA expð−ðr2=λ2AÞÞ, whereas we use Debye–Huckel in-
teraction for longer-ranged interaction, which becomes a modified
Bessel function of the second kind of order zero after integrating
out along the contour, URðxÞ=ΓRK0ðκxÞ, where κ= λ−1R . Because
we model the short-ranged cation–π interactions in our model, we
assume λA < λR. The total potential is then UðxÞ=URðxÞ+UAðxÞ.
The Hamiltonian of the system is then

HN =
e

2

XN
i=1

ZL
0

dz  u2ðzÞ+N2

2

Z
dxdx′

1
L

ZL
0

ρ̂ðx, zÞUðjr− x′jÞρ̂ðx′, zÞ.

[S1]

The first term on the right-hand side is the mechanical energy of
the directed polymers and e is the line tension along the poly-
mers. Here we assume e= 3kBT=2L, similar to a Gaussian poly-
mer. The Hamiltonian is rewritten in the Fourier,

HN =
e

2

XN
i=1

ZL
0

dz  u2ðzÞ+N2

2

ZL
0

jρ̂ðk, zÞj2UðkÞ, [S2]

where ρ is the average areal density of the polymers, and
ρ̂ðk, zÞ= ð1=NÞPN

i=1expðik · riðzÞÞ. The partition function of the
system is given by

Z=
Z YN

i=1

dRiDuiexp

0
@−H0 −

Nρ

2L

ZL
0

dz
X
k

βUðkÞðkÞjρ̂ðk, zÞj2
1
A,

[S3]

where H0 is the noninteracting Hamiltonian of a Gaussian
polymer in Eq. S1. Using the Habbard–Stratonovich trans-
formation

exp
�
cjwj2

�
=
c
π

Z
dy exp

�
−cjyj2 + 2cℜ

�
ywp

��
,

exp
�
−cjwj2

�
=
c
π

Z
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�
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�
ywp

��
,

we obtain

Z=
Z YN

i=1

dRiDui expð−H0Þ
Y
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Z
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2
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[S4]

In the derivation above, we introduce a new field nðk, zÞ that
turns out to be an order parameter in the mean field limit later
on. f ½n� is an Landau–Wilson-type free energy and given by

f ½n�=
X
k

1
2L

ZL
0

dzjβUðkÞjjnðk, zÞj2 − ln z. [S5]

z is a single polymer partition function, which is defined by

z=
Z YN

i=1

dRiDui

3exp

2
4−H0 +

1
L

ZL
0

X
k

jβUðkÞjfΘðUðkÞ< 0Þ

+ iΘðUðkÞ> 0Þgnðk, zÞρp ðk, zÞ
3
5.

[S6]

In the mean field the free energy minimization yields,

Kim et al. www.pnas.org/cgi/content/short/1521521113 1 of 5

www.pnas.org/cgi/content/short/1521521113


nspðk, zÞ= hρ̂ p ðk, zÞiΘðUðkÞ< 0Þ+ ihρ̂ p ðk, zÞiΘðUðkÞ> 0Þ.
[S7]

From Eq. S7, we see that nspðkÞ can be a parameter to distinguish
the liquid stated and the densely ordered structure. In other
words, nspðkÞ can be an order parameter for macroscopic phase
transition of dense packing. h⋯i is an average with respect to a
single Gaussian polymer Hamiltonian.
The Ginzbug–Landau type of equation is obtained for the

Hamiltonian around the saddle point:

f sp½nsp�= ρL
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Here
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The system becomes unstable whenU(k*) < 0 and the coefficient
of the second-order term of [S8] is negative; i.e.,

ρp jU  p
�
kp

�
jb
�
kp

�
> 1. [S9]

Here, kp,   ρ* are dimensionless quantities scaled by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðβe=LÞp

and ðβe=LÞ3=2, and the energies are scaled by kBT.
If this criterion holds only for some finite kc, the system is unstable

and the polyelectrolytes aggregate to form a finite-sized bundle of
size 2π=kc. On increasing the bonding energy (or increasing bonding
distance) or reducing the repulsion (reducing the screening length),
kc becomes smaller (i.e., the size of the bundle becomes larger) and
it eventually becomes zero, which implies the system undergoes
macroscopic phase separation. In Fig. 6, we find that the phase
separation due to the stronger cation–π bond betweenMADQUAT
and tyrosine agrees with our theoretical analysis.

Pore Size Estimate from the Self-Energy of the Spherically
Charged Shell
Here we show that the few 10-nm–sized pores can be formed
from the interplay of the adhesive cation–π bond and repulsive
electrostatic interaction. We find the optimal pore size that mini-
mizes the free energy of the system within the low salt concentration
approximation, similarly to refs. 48 and 49. For simplicity, we ignore
the interaction between pores, which allows us to approximate each
pore as a single charged sphere of radius R, which carries its charge
Q on its shell. Under the Debye–Huckel approximation, the po-
tential satisfies the relation

∇2ϕ
	
~r

 ’ κ2Dϕ

	
~r


, [S10]

where, κ−1D is Debye screening length.
The boundary condition is

∇ϕ
	
~r

jr=R ’ −

4πeσ
e

, [S11]

where R is the radius of the pore, σ is a number density of surface
charge, e is a unit charge, and e is a dielectric constant of water.
Then, the solution of the outer surface is given by

ϕ
	
~r


=
Q expf−κDðr−RÞg

2κDRe  r
, [S12]

when κDR � 1.
The self-energyWel of the spherically charge shell is expressed as

Wel =
e

2

ZZ Z∞
r>R

d3rj∇ϕ	~r
j2. [S13]

By substituting [S12],

Wel =
4π2e2σ2R2

κDe
. [S14]

On the other hand, the adhesive attraction due to the cation–π
bond is given by

Wadh =
4πR3

3
ρπE+π . [S15]

Here ρπ is a volume density of π residues and E+π is a bond
energy of cation–π. Then, the optimal radius is determined by

R=
2πlBσ2

κDρπðE+π=kBTÞ. [S16]

Although the acetic acid concentration is only about 1 mM, ad-
ditional chloride ions exist that are produced during the disso-
lution of MADQUAT. It is difficult to determine the surface
charge density, because we do not know the thickness of the
shell and how strongly they are neutralized inside the shell due
to the strong electrostatics. Because we want to consider a very
thin shell, we consider the phase boundary of coacervation that
gives the minimum concentration of MADQUAT and chloride
ions, about 200 mM. Then, κ−1D ’ 0.96  nm, σ ’ 2  nm−2. Further,
lB ’ 0.7  nm. E+π is the value estimated by quantum simulation,
and ρπ in the coacervate phase is approximated as 0.65 M, which
translates to 0.39  nm−3. Then, R ’ 4.8  nm, and hence pore size is
about 9.6 nm. This is a little bit smaller than the experimental
results because we assume the infinitely thin shell. If we consider
the polyelectrolytes in the shell, σ can be larger, which results in
larger pore size.
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Fig. S1. Phase diagram of MADQUAT/Rmfp-1 mixtures with the coacervate dense phase volume fraction value as a function of the concentration of Rmfp-1
and MADQUAT.

Fig. S2. TEM image of cationic Rmfp-1 aggregates that form finite-size bundles in 0.1 M acetic acid (pH ∼3.0).

Fig. S3. Dependence of adhesion energy between MADQUAT and Rmfp-1 surfaces on KNO3 concentration in 0.1 M acetic acid. The MADQUAT and Rmfp-1
surfaces were kept in contact for 2 min before force measurements.
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Fig. S4. Dependence of capillary bridging force on separation velocity of complex coacervate phase confined between two mica surfaces.

Fig. S5. Relative turbidity of like-charged complex coacervates of Rmfp-1 and MADQUAT, depending on salt concentration.

Fig. S6. Cryo-TEM images of Rmfp-1/MADQUAT coacervate (Left, no salt; Right, with 0.5 M NaCl).
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Fig. S7. TEM images of (A) pure silica nanoparticles and (B) silica nanoparticles suspended in the like-charged coacervate (Rmfp-1/MADQUAT).
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